CUTE and jCUTE : Concolic Unit Testing and
Explicit Path Model-Checking Tools

(Tools Paper)

Koushik Sen and Gul Agha
University of Illinois at Urbana-Champaign, USA.
{ksen,agha}@cs.uiuc.edu

Abstract. CUTE, a Concolic Unit Testing Engine for C and Java, is a
tool to systematically and automatically test sequential C programs (in-
cluding pointers) and concurrent Java programs. CUTE combines con-
crete and symbolic execution in a way that avoids redundant test cases
as well as false warnings. The tool also introduces a race-flipping tech-
nique to efficiently test and model check concurrent programs with data
inputs.

1 Introduction

Software testing is the primary technique used in the software industry to im-
prove reliability, safety, security, and robustness of software. Our research on
concolic testing [1, 6, 4] shows that we can combine random testing and symbolic
testing of a program to provide a scalable tool for automatically generating test
cases, which improves test coverage and avoids redundant test cases as well as
false warnings. Concolic testing involves explicit path model-checking in which
our goal is to generate data inputs and schedules that would exercise all feasi-
ble execution paths of a program. We have developed two automated concolic
testing tools: CUTE for C and jCUTE for Java programs.

We have used CUTE and jCUTE to find bugs in several real-world software
systems including SGLIB, a popular C data structure library used in a com-
mercial tool, implementations of the Needham-Schroeder protocol and the TMN
protocol, the scheduler of Honeywell’s DEOS real-time operating system, and
the Sun Microsystems’ JDK 1.4 collection framework.

2 Concolic Testing

We briefly describe the algorithm for concolic testing; details can be found in [6,
5,4]. The algorithm executes a program both concretely and symbolically. The
symbolic execution differs from traditional symbolic execution, in that the algo-
rithm follows the path that the concrete execution takes. During the execution,
the algorithm collects the constraints over the symbolic values at each branch
point (i.e., the symbolic constraints). At the end of the execution, the algorithm
has computed a sequence of symbolic constraints corresponding to each branch
point. We call the conjunction of these constraints a path constraint. Observe
that all input values that satisfy a given path constraint will explore the same
execution path, provided that we follow the same thread schedule.

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE
2006 N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
CUTE and jCUTE : Concalic Unit Testing and Explicit Path
M odel-Checking Tools (T ools Paper)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Illinoisat Urbana-Champaign Department of Computer
Science 201 N. Goodwin Avenue Urbana IL 61801

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

CUTE, a Concoalic Unit Testing Enginefor C and Java, isa tool to systematically and automatically test
sequential C programs (in- cluding pointers) and concurrent Java programs. CUTE combines con- crete
and symbolic execution in a way that avoidsredundant test cases aswell asfalse warnings. Thetool also
introduces a race-flipping techniqueto efficiently test and model check concurrent programswith data

inputs.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

ABSTRACT

c. THISPAGE SAR
unclassified

a REPORT
unclassified

b. ABSTRACT
unclassified

17. LIMITATION OF

18. NUMBER 19a. NAME OF
OF PAGES RESPONSIBLE PERSON
4

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Apart from collecting symbolic constraints, the algorithm also computes the
race condition (both data race and lock race) between various events in the
execution of a program, where, informally, an event represents the execution of
a statement in the program by a thread.

The algorithm first generates a random input and a schedule, which specifies
the order of execution of threads. Then the algorithm does the following in a
loop: it executes the code with the generated input and the schedule. At the same
time the algorithm computes the race conditions between various events as well
as the symbolic constraints. It backtracks and generates a new schedule or a new
input, either by re-ordering the events involved in a race or by solving symbolic
constraints, respectively, to explore all possible distinct execution paths using
a depth first search strategy. Note that because the algorithm does concrete
executions, it is sound, i.e. all bugs it finds are real.

There is one complication: for some symbolic constraints, our constraint
solver may not be powerful enough to compute concrete values that satisfy the
constraints. To address this difficulty, such symbolic constraints are simplified
by replacing some of the symbolic values with concrete values. Because of this,
our algorithm is complete only if given an oracle that can solve the constraints
in a program, and the length and the number of paths is finite.

3 Tool Detalils

The tools, CUTE and jCUTE, consist of two main modules: an instrumentation
module and a library to perform symbolic execution, to solve constraints, and
to control thread schedules. The instrumentation module inserts code in the
program under test so that the instrumented program calls the library at runtime
for performing symbolic execution. JCUTE comes with a graphical user interface
(a snapshot can be found in Figure 1).

CUTE and jCUTE uses CIL [3] and the SOOT compiler framework [8] to
instrument C and Java programs, respectively. Instrumentation of jCUTE asso-
ciates a semaphore with each thread and adds operations on these semaphores
before each shared-memory access. These semaphores are used to control the
schedule of the threads at runtime. To solve arithmetic inequalities, the con-
straint solver of CUTE uses Ipsolve [2], a library for integer linear programming.
CUTE and jCUTE save all the generated inputs and the schedules (in case of
jCUTE) in the file-system. As such the users of CUTE and jCUTE can replay
the program to reproduce the bugs. The replay can also be performed with the
aid of a debugger. For sequential programs, jJCUTE can generate JUnit test
cases, which can be used by the user for regression testing as well as for debug-
ging. jJCUTE also allows the users to graphically visualize the multi-threaded
execution.

CUTE provides a macro CUTE_input (x), which allows the user to specify
that the variable x (of any type, including a pointer) is an input to the program.
This comes in handy to replace any external user input, e.g., scanf (< ¢%d’’ ,&v)
by CUTE_input (v) (which also assigns a value to &v). Note that this macro can
be used anywhere in the program. JCUTE also provides a similar function to
obtain input from the external environment.

2

£ JCUTE (CUTE for. JAVA): A Concolic Unit Testing Engine for Java

®rrle n nlE[nE 0@

~Java Program to be Tested

| Source Directory |D:lsvnclwurmeule\iavalsrc || & ‘
| Main Java File |D.\svnc\wurk\cule\iava\src\lesls\DSun.java | D;J
| Function o be Tested |tests.DSnrt.main | - | Program parameters \ |

TestingLog | Output | Statistics |

"Log-
‘Path # Input Trace - | Source: Dilsyncworkicute java\srciestsiDSort java
= 1273339“9515"‘,']“2) N || :otherin Thread-2 | — public vaid rung § =
[7]| | [Clem2iRERcyin k) bt unlock in Thread-2 int swapCount=0;
4 nex(=329_ﬁl]7l]3tte_s(s.N_u.‘ -z lock in Thread-1 forginti=0; i = maxSwaps; i++)
| LS slentsiiitegerdnmal) |1 :read in Thread-1 if (current swapElemon swapCount++:
| nexl=22l]_52399(n?sls.u__ - :read in Thread-1 ifiswap Count==maxSwaps)
= elem=0(integer) in n_1a| - tread in Thread-1 Cute Assertiourre mtinOrdarO);\
next=0(tests.Node in -z branch in Thread-1 H gssert I (swapCount == maxSwaps) =
| - unlock in Thread-1 A clerent inCrcer), =
10 #--: other in Thread-1 }
11 L t--: unlock in Thread-1 |=|| |}
12 L’ﬂﬂ?ﬂ,ﬂ.n—l—h ~-:callin Thread-1__|~|| =
[Progress-
Paths Covered 12120 Branches Covered 16 Branch Coverage 08.688% Errors 2 DFSInfo g

| Total Progress | | f

Fig. 1. Snapshot of jCUTE

4 Case Studies

We briefly describe our experience with two of the case-studies we have done,
one is a data structure library in C and the other is the thread-safe Collection
framework provided with Sun Microsystems’ Java 1.4.

SGLIB Library. We applied CUTE to unit test SGLIB [7] version 1.0.1, a
popular, open source C library for generic data structures, such as lists, hash
tables, red-black trees, and so on. The library has been extensively used to
implement the commercial tool Xrefactory.

We found two bugs in SGLIB using CUTE within 3 seconds of testing. The
first bug is a segmentation fault that occurs in the doubly-linked-list library
when a non-zero length list is concatenated with another zero-length list. The
second bug is an infinite loop, which CUTE discovered in the hash table library.
We reported these bugs to the SGLIB developers, who confirmed that these are
indeed bugs. Further details about this case study along with branch coverage,
runtime for testing, number of inputs generated, etc., can be found in [6].

Sun Microsystems’ Java Collection Framework. We tested the thread-
safe Collection framework implemented as part of the java.util package of
the standard Java library provided by Sun Microsystems. A number of data
structures provided by the package java.util are claimed as thread-safe in the
Java API documentation. This implies that multiple invocation of methods on
the objects of these data structures by multiple threads must be equivalent to
a sequence of serial invocation of the same methods on the same objects by a
single thread.

We chose this library as a case study primarily to evaluate the effective-
ness of our jJCUTE tool. As Sun Microsystems’ Java is widely used, we did not

expect to find potential bugs. Much to our surprise, we found several previ-
ously undocumented data races, deadlocks, uncaught exceptions, and an infinite
loop in the library. Note that, although the number of potential bugs is high,
these bugs are all caused by a couple of problematic design patterns used in
the implementation. The details of this case study can be found in [5]. Here
we briefly describe an infinite loop that jJCUTE discovered in the synchronized
LinkedList class. We present a simple scenario under which the infinite loop
happens. We first create two synchronized linked lists 11 and 12 by calling
Collections.synchronizedList (new LinkedList()) and add null to both
of them. Then we concurrently allow a new thread to invoke 11.clear() and
another new thread to invoke 12.containsAl11(11). jCUTE discovered an in-
terleaving of the two threads that resulted in an infinite loop. However, the
program never goes into an infinite loop if the methods are invoked in any order
by a single thread. JCUTE also provided a trace of the buggy execution. This
helped us to detect the cause of the bug. A summary of the results of testing
various Java synchronized Collection classes is provided in Table 1.
Acknowledgment This work is supported in part by the ONR Grant N00014-02-1-
0715, the NSF Grant NSF CNS 05-09321, and the Motorola Grant RPF #23.

Name Run time | # of | # of |% Branch|# of Funs|# of Bugs

in seconds|Paths|Threads| Coverage| Tested |R/D/L/E
Vector 5519(20000 5 76.38 16| 1/9/0/2
ArrayList 6811|20000 5 75 16| 3/9/0/3
LinkedList 4401[11523 5| 82.05 15| 3/3/1/1
LinkedHashSet 7303|20000 5 67.39 20| 3/9/0/2
TreeSet 7333|20000 5 54.93 26| 4/9/0/2
HashSet 7449|20000 5 69.56 20| 19/9/0/2

Table 1. Results for testing synchronized Collection classes of JDK 1.4.
R/D/L/E stands for data race/deadlock/infinite loop/uncaught exceptions

References

1. P. Godefroid, N. Klarlund, and K. Sen. DART" Directed automated random testing.
In Proc. of the ACM SIGPLAN 2005 Conference on Programming Language Design
and Implementation (PLDI), 2005.

2. lp_solve. http://groups.yahoo.com/group/lp_solve/.

3. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate Lan-
guage and Tools for Analysis and transformation of C Programs. In Proceedings of
Conference on compiler Construction, pages 213-228, 2002.

4. K. Sen and G. Agha. Automated systematic testing of open distributed programs.
In Fundamental Approaches to Software Engineering (FASE’06), volume 3922 of
LNCS, pages 339-356. Springer, 2006.

5. K. Sen and G. Agha. Concolic testing of multithreaded programs and its applica-
tion to testing security protocols. Technical Report UTUCDCS-R-~2006-2676, UTUC,
2006.

6. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In
5th meeting of the European Software Engineering Conference and ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 2005.

7. SGLIB. http://xref-tech.com/sglib/main.html.

8. R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot -
a Java optimization framework. In Proceedings of CASCON 1999, pages 125-135.

